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I. Introduction and Literature assay 47 

In our daily lives,our professional endeavors, andour attempts to cope with our natural 48 

and social environments, we are surprised… over and over and over again. No matter how 49 

comprehensive the information we gather, how astute our perceptions, how elegant our analytic 50 

techniques, how profound the resulting conclusions, or how receptive and well prepared the 51 

audiences who hear them, surprises will happen. Ironically, one of the few things we can be 52 

certain of is surprise.  53 

 In a widely cited publication, C.S. Holling defined surprise as when perceived reality 54 

departs qualitatively from expectation (Holling 1986). While Holling described surprise as a 55 

local phenomenon, the literature concerning surprise has, in the three decades since his article, 56 

broadened in both scale and scope. Yet a common thread binds much of the work behind this 57 

literature. It is the desire to avoid expecting wrong, that is, to resist the innate human tendency to 58 

overestimate the certainty with which we can anticipate changes based onpast experience, trends, 59 

patternsorprocesses that we, and others before us,have known(Lempert et al. 2002). 60 

 To address surprise both conceptually and operationally, we organize the pages that 61 

follow in four sections: 1) a brief assay of the literature on surprise from the past 30 years, with a 62 

focus on typologies of surprise and strategies to avoid expecting wrong in environmental 63 

planning and design; 2) an overview of a western Oregon study area and multi-agent based 64 

simulation model of it that focused on wildfire as a representative surprising phenomenon; 3) a 65 

description of the key assumptions and transferrable methods we used to anticipate surprise; and 66 

4) resulting lessons and generalizable conclusions regarding the use of these and similar 67 

geodesignapproaches in anticipating surprise in other settings. 68 
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 As it pertains to this special issue on geodesign, we positiongeodesign as one of many 69 

waysof working (albeit a rapidly emerging one) that aim to avoid expecting wrong. Relative to 70 

the long-standing disciplines of environmental planning and designthat share this aim, geodesign 71 

offers a rare promise, toaccelerate an evolution from primarily deterministic approaches to 72 

planning and design to approaches that are probabilistic. We return to the notion of deterministic 73 

versus probabilistic approaches at the conclusion of the article. We begin with typologies of 74 

surprise. 75 

 76 

Typologies of surprise 77 

No single, definitive typology of surprise has emerged in the past three decades.We 78 

highlight some seminal works in Table 1 that are relevant to environmental planning and design, 79 

with a focus on the definitions, types, and key qualities these authors attribute to surprise.  80 

 81 

(Insert Table 1 near here) 82 

 83 

AsHolling(1986) did, Kay (1984), Brooks (1986),and Myers (1995) alsoacknowledged 84 

that surprises are, in important ways, beyond expectation.Kay argues that surprisesare generally 85 

considered to have too low a probability to occur, whileBrooks distinguishes three types of 86 

surprise: unexpected discrete events, discontinuities in long-term trends, and a sudden broad 87 

awareness of new information.  88 

 In a paper that prompted a still-ongoing debate on the relationshipbetween ignorance and 89 

surprise, Faber et al. (1992), and then Schneider et al. (1998), distinguish closed from open 90 

ignorance as sources of surprise. In the former, one is unaware of their ignorance, and thus 91 
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unable to even imagine there might be surprise ahead.  Once aware of our ignorance, we may be 92 

able to reduce it through personal or communal learning. Alternatively, our ignorance may be 93 

irreducible because the phenomenon itself is inherently unpredictable or because the very 94 

structure of knowledge prevents certainty (Schneider et al. 1998).  Even then, recognition of our 95 

ignorance may confer greater ability to prepare us for surprise (Fig. 1).  96 

 97 

(Insert Figure 1 near here  -from Faber et al. 1992) 98 

 99 

Streets and Glantz (2000), in an article on the concept of climate surprise, argue that 100 

surprisesaresubjectively determined and rarely surprise everyone, inasmuch as each surprise is 101 

relative to the convictions about the world held by the person surprised. They cite Kates and 102 

Clark (1996),as notingthat surprises createopportunities to increase our capacity to thoughtfully 103 

manage our environments. Like Brooks before them, Streets and Glantzalso invoke time to 104 

distinguish surprises that are sudden from those that are creeping. This matters, they argue, 105 

because of ourinherent tendency to assume that whateverweexperiencein a sustained way is 106 

normal and will persist, which may blind us to the potential for the unexpected, or lead us to 107 

ignore the warning signs of gradual change. 108 

 Lempert et al. (2002) introduce the conditions of deep uncertainty and complexity as 109 

common precursors to surprise. Deep uncertainty prevails where differing conceptions exist 110 

about the system in question andthe probabilities associated with key system parameters. 111 

Complexity exists when systems exhibit multiple, nonlinear interactions among components at 112 

different levels of aggregation. When one is dealing with complex systems in the presence of 113 

deep uncertainty, they argue that the prospects for surprise increase. 114 
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 Driebe and McDaniel (2005) seek to integrate contemporary understandings of 115 

complexity, uncertainty, and surprise. They highlight the crucial role of fluctuations in complex 116 

systems dynamics, and the ways in which seemingly small fluctuations can flip a system to a 117 

new state with a different spatiotemporal structure. Similar to Faber et al. (1992), they offer a 118 

typology of uncertainty andassociated system characteristicsarrayed along a spectrum from 119 

reducible to irreducible uncertainty: lack of knowledge of a simple process,where uncertainty can 120 

be eliminated once the process is known and described; reduced dynamics of an open system, 121 

where future trajectories are uncertain because system dynamics are only partially known 122 

anduncertainty can be reduced or eliminated if system dynamics are more fully understood; 123 

chaotic dynamics, where systems are extremely sensitive to initial conditions, rendering 124 

knowledge about future trajectories highly uncertain; irreducibly complex system dynamics with 125 

many degrees of freedom,for example fluid turbulence or the weather; systems withreflexive 126 

dynamicscomposed of thinking, feeling agents who can anticipate and/or react to system 127 

dynamicsand, in the process, reshape them; and finally, systems exhibiting quantum dynamics, 128 

where only probabilistic system descriptions are possible. They note that from the level of 129 

chaotic dynamics on, uncertainty is fundamental and surprises can never be eliminated. In such 130 

systems, probabilistic forecasts are increasingly necessary. 131 

 In a helpful clarification of nomenclature, Shearer (2005) distinguishes surprising events 132 

and their explanations from surprising actions and their reasons in the context of coupled 133 

human:natural systems. In this usage, actions are things people do, events occur independent of 134 

direct human action.  Although events in complex systems can be intractably difficult to predict, 135 

the actions of human beings can be even more confounding. 136 
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 Kuhlicke (2010), building on Streets and Glantz (2000), argues that the reason a surprise 137 

is not a surprise to everyone is due to people’s differing realms of experience that, in turn, lead to 138 

differing horizons of expectation. Both Kuhlicke(2010) and Gross (2010) differentiate what they 139 

refer to as forms of the unknown, a concept popularized several years ago by then-U.S. Secretary 140 

of Defense Donald Rumsfeld, who contrasted known unknowns with unknown unknowns. Gross 141 

lists these forms of the unknown as Nescience, which are unknown unknowns, and whose 142 

discoveries can be associated with what Kuhlickecalls radical surprises;Ignorance, which is 143 

knowledge about the limits of knowledge in a specific area;Non-knowledge, which 144 

constitutesknown unknowns that are considered in planning for the future; and Negative 145 

knowledge, which is knowledge about what is unknown that is considered unimportant or even 146 

dangerous. 147 

 Markley (2011) introduces the notion of a steep surprise, also called a wild card, which is 148 

inherently disruptive of extant systems, and has a low probability but high impact. He describes 149 

four types of wild cards in terms of combinations of low/high probability, low/high impact, and 150 

disputed or high credibility.We next turn our attention to how people seek to avoid expecting 151 

wrong in the face of potential surprise.  152 

 153 

Some ways to avoid expecting wrong 154 

The ways people have devised to avoid expecting wrong are legion, and they arise in a 155 

wide array of disciplines, across many fields of endeavor. With an eye to those most directly 156 

applicable to environmental planning and design, we focus here on a subset of 10 approaches 157 

that have been addressed in the peer-reviewed literature during the same 30-year period covered 158 
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above. We list them in chronological order in an effort to express the evolution of different, 159 

accumulating approaches to a vexing problem. 160 

 Brewer (1986) notes that data about the future are unavailable, and in part as a result, 161 

there is a rich diversity of methods to be applied to choices about the future. He focuses on two: 162 

models and scenarios, arguing that the scenario is the fundamental building block of all future-163 

oriented modeling and analysis. He notes six broad categories of application for simulation 164 

models (Table 2). 165 

 166 

Insert Table 2 near here (Brewer 1986) 167 

 168 

Gordon (1992) outlinesone of Brewer’s six categories of simulation model applications - 169 

forecasting methods - and uses a matrix to crosswalk quantitative vs. qualitative methods of 170 

forecasting with those that are normative vs. exploratory. 171 

 172 

Insert Table 3 near here (Gordon 1992) 173 

 174 

Kates and Clark (1996) note a number of techniques to anticipate surprise, including 175 

surprise theory, which focuses on the principles underlying unexpected events and actions, 176 

historical retrodiction which attempts to reconstruct past events based on present conditions, 177 

introducing contrary assumptions, asking experts, using systems dynamics models, and finally 178 

imaging, in which an unlikely event is postulated and attempts are made to construct a plausible 179 

scenario to explain it.  180 

 Lempert et al. (2003), having surveyed the principal means human reason and 181 
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imagination have devised to consider the future and how people’s actions might affect it, offer 182 

two conclusions, the first a source of comfort, the second a challenge. Their good news is that 183 

tools supporting thinking about the future have a lengthy pedigree, and thus there is a trove of 184 

experience and insight on which to draw. Having critiqued group narrative processes such as 185 

Delphi, simulation modeling and scenarios, they conclude that the challenge all these methods 186 

suffer from is a common inability to come to grips with the multiplicity of plausible alternative 187 

futures. They also note there has been a dramatic increase in the use of scientific, quantitative 188 

methods for informing landscape change in the past three decades, and that this increase has 189 

occurred in both the public and private sectors. They characterize the predominant approach in 190 

such assessments as a predict-then-actapproach, which pairs models of rational decision-making 191 

with methods for treating uncertainty derived largely from the sciences and engineering. Predict-192 

then-act approaches, because of their narrower conception of future possibilities, often seek 193 

optimum solutions for a small number of variables in a narrowly defined conception of the 194 

future. A second approach is emerging that differs frompredict-then-act in important ways. 195 

Rather thanseeking strategies and policies that are optimalagainst some small set of scenarios for 196 

the future,this explore-then-testapproach seeks near-termactions that are shown to perform well, 197 

i.e. are robust, across a largeensemble of plausible future scenarios. Theseapproaches offer the 198 

promise of policies and patterns that are sufficiently prepared for future surprise toallow people 199 

to seize unexpected opportunities, adapt when things go wrong, and provide new avenues for 200 

forging consensus in relation to the facts and values that steer landscape change(Gunderson et al. 201 

2002; Hulse et al. 2009; Lempert et al. 2003). 202 

 With biodiversity conservation as a motivating concern, Polasky et al. (2008) use the 203 

economic concept of an efficiency frontier and simultaneously apply econometric and biological 204 
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models to a regional study areato identify those land use patterns that strike a more optimum 205 

balance between two variables:economic outputand the number of terrestrial vertebrate species 206 

sustained.  They conclude that, when managing landscapes ‘close to the efficiency frontier’,even 207 

small additional increases in either economic output or biodiversity necessarily impose large 208 

declines on the other variable. 209 

 Setting their sights on anticipatingecological surprises, Lindenmayer et al. (2010) list 210 

seven ways to improve the probability of doing so: 1) investing in long-term in-situ studies; 2) 211 

conducting a range of parallel research at such long-term research sites; 3) regularly updating 212 

conceptual models of the target system; 4) mining past literature when generating key questions; 213 

5) good experimental design; 6) field-based empirical investigations; and 7) rapid research 214 

response to major system disturbances. 215 

 Steinitz (1990, 2012), writing with a focus on a place-based, question-drivenframework 216 

for geodesign, proceedsusing modeled answers to six key questions: 1) how should the study 217 

area be described? 2) how does the study area operate? 3) is the current study area working well? 218 

4) how might the study area be changed? 5) what differences might the changes cause? and 6) 219 

how should the study area be changed? He argues for an intentionally iterative sequence of 220 

addressing these questions, first from 1 – 6 to scope the study, then from 6 – 1 to articulate the 221 

detailed study method, and finally from 1 – 6 to carry out the study. Steinitz’s framework is 222 

premised on the notion that a successful intentional change is one that, among other 223 

achievements, avoids expecting wrong across a wide array of things people care about, and over 224 

extended periods of time. 225 

 Filatova et al. (2013) enumerate four pressing challenges for bringing to bear the 226 

considerable advantages of agent-based modeling of coupled social-ecological systems, 227 
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particularly in the face of climate change. These are: 1) modeling agents’ behavior; 2) sensitivity 228 

analysis, verification and validation; 3) the pragmatic coupling of socio-demographic, ecological 229 

and biophysical models; and 4) the spatial representation of systems exhibiting multiple, 230 

nonlinear interactions among components at different levels of aggregation.  231 

 Writing to the global reinsurance industry (the organizations that insure insurance 232 

companies) on behalf of The Geneva Association, Niehorster et al. (2013) address the combined 233 

consequences of climate change-driven ocean warming and increased capital investmentsthat are 234 

being placed in harm’s way from sea level rise. They argue thatactuarially derived,time-235 

dependent, model-based estimates of future hazard probabilities, such as those conventionally 236 

used by the reinsurance industry, come withsignificant uncertainties that arise from model 237 

imperfections, their numerical structure, and the parameter estimation problems inherent in 238 

models of high-dimensional chaotic systems.Such uncertainty isirreducible, and is constrained by 239 

the limits of current scientific understanding and the ability to predict extremeevents in a chaotic 240 

system.  They conclude that multi-model probabilistic risk management must incorporate 241 

scenarios that reflect a wide range of plausible futures. 242 

 Kunreuther et al. (2013) acknowledge the limits of standard approaches such as expected 243 

utility theory and cost-benefit analysis in the context of deep uncertainty about the future, and 244 

argue for a broader approach to risk management. They recommendusing statistical, non-245 

probabilistic techniques, e.g. minimax regret and maximin criteria, for making choices when the 246 

probabilities of possible outcomes are unknowable. Following Lempert et al. (2006),they 247 

characterize these approaches as robust. 248 

 No single project can realistically employ all the approaches listed above. In the next 249 

section, we summarize efforts that employ an intentional path through a subset of these 250 
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approaches and techniques. The effort is applied to a study area in western Oregon, is scenario-251 

based, uses a multiplicity of scenarios to model a complex, coupled human:natural system in the 252 

presence of deep uncertainty about future climate, and employs a long-term (50+ year) history of 253 

fire records to establish expectations for what constitutes a surprising event – in this case, fire. 254 

 255 

II. Study area and modeled representation of landscape change 256 

The 81,000-hectare study area is located at the southern end of Oregon's Willamette 257 

Valley Ecoregion (WVE) (Fig. 2). The Ecoregion's 2010 population from U.S. Census data was 258 

2.6 million, accounting for 69% of Oregon's total population. Oregon's land use patterns are 259 

guided and regulated by its statewide land use planning system. This system concentrates the 260 

development of residential, commercial, and industrial land use within city-like entities called 261 

urban growth boundaries (UGBs).  Development outside of UGBs is limited primarily to uses 262 

that support agriculture and forestry (for example farm residences and outbuildings). There are 263 

67 urban growth boundaries in the WVE; Portland Metro is the largest with ~1.5 million people 264 

followed by the adjacent UGBs of Eugene and Springfield with a combined population of 265 

~235,000. Our project's study area shares a boundary with the southern edge of the Eugene/ 266 

Springfield UGB and contains at least some portion of four smaller UGBs (Fig. 2). Twenty-eight 267 

percent of the study area is in agricultural use and 68% is in vegetated cover that includes oak 268 

savanna, mixed deciduous/conifer forest and stands of Douglas-fir. Elevation within the study 269 

area ranges from 111 – 643 meters above sea level. 270 

 271 

Insert Figure 2 near here 272 

 273 
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The study area was chosen in part for its mix of residential development types: it is adjacent to 274 

Eugene/ Springfield’surban center and contains smaller urban centers as well as rural residential 275 

development.  Another quality is thewildlandurban interface (WUI) that covers49% of the 2007 276 

study area landscape.  A WUI is defined as the area where structures and other human 277 

development meet or intermingle with undeveloped wildland (Radeloff et al. 2005).  WUIs 278 

frequently combine high levels of fire hazard with high numbers of vulnerable structures, 279 

creating high risk.  WUIs like that of the study area have become the focus of wildfire risk 280 

reduction efforts by federal, state and local agencies, making them useful for exploring the 281 

concept of surprise in the context of climate change and land management. 282 

 283 

Coupled human:natural systems model 284 

Changes in the study area landscape over time were simulated by coupling an agent-285 

based model of land use change(Guzy et al. 2008)to a climate-sensitive successional model of 286 

vegetation and a mechanistic wildfire model driven by climate inputs.The landscape was 287 

populated with decision-making agents whose actions were parameterized based on surveys of 288 

local rural landowners (Ribe et al. 2014). Agents make choices based on their internal value 289 

systems as well as feedbacks from landscape level productions and scarcities. Their choices 290 

include those related to changes in land use (e.g., land use zoning and the construction of new 291 

homes), and to land management (e.g. timber harvest, commercial thinning, ecological 292 

restoration and fuels reduction treatments). The key assumptions and approaches of the 293 

coupledmodel are described in Appendix S1, including the methods used to model fire and the 294 

factors that influence its behavior. 295 
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The units of change and decision-making within the simulated study area are spatially-296 

delimited polygons called Integrated Decision Units (IDUs).  There are 86,000 IDUs in the study 297 

area with an average size of0.9ha.  Each IDU is assigned an agent who makes decisions about 298 

changes to land use and land management on the IDU under their control and in accordance with 299 

their individual decision preferences.  Each IDU is associated with an additional suite of 300 

~100attributes characterizing both biophysical and sociocultural qualities that influence land 301 

management decisions.  Approximately half of these attributes are static over the course of a 302 

model run, while the other halfchange over time in response to biophysical events and agent 303 

actions.  Changes in the landscape take place at the level of individual IDUs through 50 annual 304 

time steps from 2007 through 2056.   305 

Landscape changes are modeled using eight alternative future scenarios (Tables 4, 5, and 306 

6).  These scenarios vary in their assumptions about three primary drivers of landscape change: 307 

1) climate change, 2) development patterns, and 3) fire hazard management.  Two contrasting 308 

options were established for each driver: High or Low climate change; Compact or Dispersed 309 

development; and Conventional or Mixed fuels treatments, as described below.  The possible 310 

combinations result in the eight scenarios shown in Table 4.Each scenario is given a three-letter 311 

acronym identifying which combination of the three drivers propels it (e.g. HCM, LCC, HDM, 312 

etc.). 313 

 314 

Insert Tables 4, 5, and 6 near here 315 

 316 

Climate change  317 

Climate change is projected to lead to increased wildfires in many ecosystems (Flannigan 318 
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et al. 2009). The strong seasonality characteristic of the climate of the Pacific Northwest (PNW) 319 

is likely to become amplified (Mote and Salathé 2010), leading to changes in both vegetation and 320 

fire regimes. Regional simulations by Rogers et al. (2011) showed the potential for large 321 

increases in area burned (76%–310%) and burn severities (29%–41%) by the end of the 21st 322 

century across a range of climate scenarios using the dynamic global vegetation model MC1 323 

(Bachelet et al. 2001).  324 

In our model, climate change projections drive simulated fire weather and influence 325 

vegetation succession. We used downscaled climate data from the Hadley (Johns et al. 326 

2003)and MIROC 3.2 medres (Hasumi andEmori 2004) General Circulation Models (GCMs), 327 

which have been shown to perform well against observed regional variations in temperature and 328 

precipitation during the 20th century in the Coupled Model Intercomparison Project 3 329 

(CMIP3)(Mote &Salathé 2010), while at the same time producing contrasting projections of 330 

future climate impacts on vegetation and wildfire in the PNW climate(Rogers 2011). Projections 331 

from both these models show amplified seasonal trends in temperature, precipitation, water 332 

stress, and productivity. Precipitation generally increases in winter and decreases in summer. 333 

Temperature increases were highest in summer. Our climate models used forcing produced under 334 

the IPCC A2 emissions scenario (Nakićenović et al. 2000). The Hadley A2 climate inputs 335 

formed the basis for what we later designated as the High Climate change scenarios, and the 336 

MIROC A2 climate inputs formed the basis for the Low climate change scenarios. 337 

 338 

Development and fire hazard management scenarios 339 

 Similar to climate change drivers, each of the other two scenario dimensions consisted of 340 

two contrasting alternatives, in this case both related to human activities in the study area. The 341 



   15 

Compact development scenarios assume continuation of Oregon’s current land use planning 342 

policies that protect farm and forest land by focusing on compact urban development (Table 5). 343 

In contrast, the Dispersed scenarios assume substantial changes to state policies that would allow 344 

more dispersed rural development. Our two fire hazard scenarios (Table 6) typify basic 345 

differences between reducing fuels and improving suppression capabilities in and around 346 

residential areas versus creating more “fire permeable” landscapes that can safely carry fire 347 

through fire-adapted ecosystems.  In our Conventional fuels treatment scenarios, the primary 348 

emphasis is on site-scale fuels treatments, with little consideration of overall landscape resiliency 349 

to wildfire.  In the Mixed fuels-biodiversity scenarios, the emphasis is on overall resiliency to 350 

wildfire at a landscape scale through the restoration of fire-adapted ecosystems such as oak 351 

savanna and woodland, in addition to conventional thinning. 352 

 353 

Defining expectations and the surprises that deviate from them 354 

 Following Holling’s definition of surprise, we must first define expectations from which 355 

fires deemed ‘surprising’ depart. Our operational definition of expectation is derived from a 356 

statewide 51-year wildfire record (1960-2011) maintained by the Oregon Department of Forestry 357 

(ODF 2005).  We define surprise as deviation of modeled future fire sizes from a threshold 358 

determined using the ODF historicalrecord.The ODF data report location, date, and size (burned 359 

area) of ~49,000 fires throughout Oregon to which ODF responded.  Fires for which ODF did 360 

not participate in suppression activities are not included.   361 

 Consistent with other fire size data (Schoenberg et al. 2006, Song et al. 2006), the size-362 

abundance relationship of the statewide ODF data exhibit a power law under double log 363 

transform (Sachs et al. 2012; Zipf 1935) (Fig. 3).  Unlike many phenomena, those exhibiting a 364 
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power law relationship between magnitude and frequency exhibit no meaningful central 365 

tendency, have no preferred scale, and have distributions with “long tails” in which most of the 366 

magnitude range occurs at low frequency.    367 

Power law phenomena are associated with threshold effects such as self-organized 368 

criticality, are characterized by positive feedbacks, and are sensitive to initial conditions and to 369 

the strengths of feedback connections (Bak 1996).  This ODF fire history data set is an example 370 

of a broader class of power law examples (Malamud et al. 2005, McKenzie and Kennedy 2012) 371 

that arise from phenomena that inherently differentiate a small number of exceptional events 372 

from a larger number of events differing greatly in magnitude from the exceptional subset.  373 

Simply put, in coupled natural and human systems, if the familiar is expected then the 374 

exceptional is likely to surprise. The following paragraphs explain our approach to defining a 375 

surprising fire.  376 

 377 

Insert Figure 3 near here 378 

 379 

 380 

A threshold of surprise 381 

From this general power law property of wildfires, we established an analytic threshold that 382 

defines a minimum size for a surprising fire based on the ODF dataset.  Because there were too 383 

few fires in the ODF record forour 81,000 ha study area to sustain analysis, we excerpted records 384 

of all those fires reported in the topographic and vegetative zone comparable to our study area 385 

(Fig.2). This Excerpted Zone (Fig. 4) subset of 5,934fires also exhibited a power law relationship 386 

between frequency and size. To identify modeled fires whose size exceeded expectation and 387 
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were thus surprising, we sought a locally relevant threshold, here defined as any modeled fire 388 

whose burned area exceeded the largest fire in the previous 50+ years from the ODF WRB data. 389 

This threshold was ~6,000 ha.   390 

 391 

Insert Figure 4 near here 392 

 393 

 We then compared all fires that resulted from performing 50 runs of each of our eight 394 

scenarios for 50 years into the future against this threshold. This comparison showed that a6,000 395 

ha. firewas the 99.83rd percentile of the size range of fires simulated in the four High climate 396 

change scenarios (i.e. HCC, HCM, HDC, HDM).  We use this threshold (i.e. largest on record in 397 

comparable territory which, when applied to the set of High climate change modeled fires, aligns 398 

with the 99.83rd percentile) to determine what constitutes a surprising fire.  Because no such fires 399 

occurred in the Low climate change scenarios, we applied the same 99.83rd percentile to the set 400 

of fires simulated in the fourLow climate change scenarios.  This resulted in a surprising fire size 401 

threshold for Low climate change futures of ~600 ha. Thus, two fire size thresholds were used to 402 

identify surprising fires, 6,000 ha for the High climate change scenarios and 600 ha for the Low 403 

climate change scenarios. 404 

 405 

Likelihood of surprising fire 406 

By mapping the spatial extent of each fire that exceeded the surprising fire size threshold 407 

applicable to its climate scenario, we tabulated the frequency with which each IDU experienced 408 

a surprising fire.  We used this frequency to derive the likelihood that each location in the study 409 

area would experience a surprising fire under the climatic and vegetative conditions ofeach 410 
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scenario.  While the assumptions of each scenario influence overall fire likelihood and extent, the 411 

observed spatial pattern of surprising fire likelihood is a property emerging from complex 412 

interactions among weather, vegetative succession, the character of human occupancy of the 413 

landscape, topography, human response to perceived fire risk, and other factors.  414 

 415 

III. Simulation results and analysis 416 

We frame our presentation of results to examine fire as a surprising phenomenon around 417 

the question “What do we need to know to increase our ability to anticipate surprise?” and 418 

approach it using the newspaperman’s dictum of “what, when, where, why, and how”.  419 

 420 

Insert Table 7 near here 421 

 422 

Under what conditions may surprise occur? Large fires typically occur when a 423 

constellation of factors come together: extreme fire weather, an ignition, a sufficient amount and 424 

arrangement of flammable fuels, and topography that, coinciding in time and space, allow the 425 

fire to spread rapidly and far. The regional expression of climate change played the dominant 426 

role in determining the likelihood that a surprisingly large fire could occur in the study area in 427 

the modeled 50 year time period. Recall that we used two separate thresholds for a fire large 428 

enough to be considered surprising, 600 ha for Low climate change futures and 6,000 ha for 429 

High climate change futures. No fires that met our 6,000 ha threshold of surprisingly large fires 430 

for High climate change (Hadley A2) futuresoccurred in the Low climate change (MIROC A2) 431 

futures. Out of 200 Low climate change simulation runs (i.e. 50 runs of each of the 4 Low 432 

climate change scenarios), the three largest fires were 5,821, 4,917 and 2,667 ha, similar in size 433 
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to the largest fires reported historically in the excerpted fire zone from the ODF historic record. 434 

However, 38 fires in the 200 Low climate change futures exceeded the 600 ha surprising fire 435 

threshold. In contrast, the 200 High climate change (Hadley A2) scenario runs included 62 fires 436 

that exceeded the 6,000 ha surprising fire threshold. Forty of these fires occurred in runs that 437 

experienced only one large fire; the other 22 fires occurred in 10 runs that had from 2-3surprising 438 

fires over the fifty modeled years (Table 7). Under High climate change scenarios, there was 439 

thus a 25% likelihood that a 50-year future in the 81,000 ha study area included one or more fires 440 

larger than the largest on record in the last 50+ years in the 1,220,000 ha Excerpted Fire Zone 441 

(Fig. 4 and 5).  442 

 443 

Insert Figure 5 near here 444 

 445 

The probability of a surprisingly large fire varied with the landscape-level approach to 446 

managing fire hazard. Scenarios applying the Mixed fuels treatment approach generated a higher 447 

likelihood of a large fire than did the Conventional fuels treatment approach (G-test, p<0.022) 448 

and accounted for 65% of all large fires. Mixed fuels scenarios encourage greater establishment 449 

of herbaceous fuels through the restoration of prairie and oak grasslands. Because moisture in 450 

herbaceous fuels is highly sensitive to changes in humidity once plants have senesced, they 451 

create the potential for explosive fire growth under extreme fire weather conditions.Fires in 452 

herbaceous fuels are relatively easy to suppress, but if they escape suppression under low fuel 453 

moistures can have rates of spread exceeded only by canopy crown fires.  454 

The higher likelihood of large fires in Mixed fuels treatment scenarios was accompanied 455 

by the potential for much larger fires. Four of the surprising fires were more than twice as large 456 
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as the 6,000 ha threshold and 18 were more than 50% larger. Of these 18 fires, all but one 457 

occurred in a Mixed fuels future, illustrating how large fires were not only more common in 458 

Mixed fuels scenarios but also that these futures had a greater potential for extreme surprise (Fig. 459 

6). Because large fires in Mixed fuels futures were both more frequent and larger, they 460 

accounted for 68% of the area burned in large fires across all scenarios and runs.  461 

Development pattern also had a scenario-level effect. Compact development scenarios 462 

marginally increased the likelihood of a large fire (G-test, p<0.075) and accounted for 61% of all 463 

fires. The proximate reasons are that in the Dispersed development scenarios, larger numbers of 464 

new rural residents lead to larger budgets for incentivized policies that support restoration and/or 465 

fire hazard reduction. As a consequence of the interaction between the development and fuels 466 

treatment scenarios, the HCM scenario accounted for 40% of all large fires while at the other end 467 

of the spectrum, the HDC scenario accounted for only 15% of all large fires.  468 

When might a surprising fire occur?Large fires could occur at almost anytime in a model 469 

run. However, the temporal pattern of large fires across many alternative futures shows that the 470 

likelihood of a large fire was not evenly distributed across time, nor was there a simple linear 471 

trend with increasing temperature or human population growth. Instead, large fires showed 472 

strikingly clustered patterns that were driven by annual variability in fire weather under the High 473 

climate change futures (Fig. 5). Within the fifty modeled years of the High climate futures, initial 474 

spikes of large fires occurred in years 8-11 (2015-2018) and in year 25 (2032); clusters of years 475 

with large fires occurred with increasing frequency starting in year 33 (2040) as climate change 476 

continued to intensify and population growth led to increasing numbers of ignitions. 477 

 478 

Insert Figure 6 near here 479 
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 480 

Figure 5 however does not show what it would be like to experience a surprising fire 481 

from within individual realized futures. Would people perceive early warning signs of a large 482 

fire?Were there upward trends in fire size prior to a large fire, or did large fires represent 483 

unpredictable threshold events? We examined these questions by calculating, for each future that 484 

experienced a surprising fire, the size of the largest fire on record each year beginning with the 485 

historical period data from 1985-2007. When large fires occurred in the first spate of extreme fire 486 

weather (2015-2018), agents had no forewarning. For example, fires of 9,000 and over 11,000 ha 487 

occurred when the previously largest fire was <100 ha (Fig. 5b and 6). These fires occurred at a 488 

time when only 40-80% of the total fuels treatment area that could be financially maintained in 489 

active management had been implemented, leaving many areas with untreated fuels. In contrast, 490 

fires that occurred more than 20 years into the future take place after a landscape-level fuels 491 

strategy had been fully implemented. Even so, nearly 60% of all successional vegetation remains 492 

untreated due to the high cost of maintaining fuels treatments over time. When the first large fire 493 

occurred toward the end of the 50-year model run, there was sometimes a step function of 494 

increasing fire size suggesting a worsening of wildfire risk, but even then the first surprising fire 495 

almost always represented a major jump in fire size compared to the largest previous fire. It is 496 

only the ability to look across multiple futures that provides the opportunity to perceive the 497 

oncoming danger.  498 

Despite the fact that Dispersed scenarios accounted for only 39% of all surprising fires, 499 

they accounted for 70% of early surprising fires (Fig. 6). In particular, HDM scenarios accounted 500 

for 50% of all early surprising fires. This likely represents an interaction between expectation 501 

and surprise: until wildfire threatens substantial numbers of homes, the higher fuels treatment 502 
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budget of a Dispersed scenario is allocated largely to savanna and prairie restoration, thus more 503 

quickly creating conditions for a fast-spreading large fire. 504 

 505 

Insert Figure 7 near here 506 

 507 

Where might a surprising fire occur? In the WVE, the interaction of altered fire regimes 508 

and topography has led to opportunities and constraints on fuels management and oak 509 

restoration. Following changes to historical fire regimes, forest types that include oak (frequently 510 

mixed with conifer), have become primarily restricted to hotter, drier, south- and west-facing 511 

slopes as well as ridgelines, whereas conifer forest with no oak tends to occupy cooler north and 512 

east facing slopes (Fig. 7a). Commensurate with local restoration and fire hazard treatment 513 

practices, we assumed that areas without oak are primarily constrained to conventional thin-514 

from-below treatments, whereas areas with oak as the dominant or subdominant species have the 515 

potential for either conventional thinning or oak restoration.  516 

The spatial heterogeneity of initial vegetation was important under the contrast of the 517 

Conventional and Mixed fuels scenarios. Under both scenarios, a spectrum of different 518 

management treatments was applied to successional vegetation, with greatest concentrations in 519 

the wildland-urban interface (Fig 2 and upper portions Fig. 7b-c). Under Conventional fuels 520 

scenarios (Fig. 7b), thin-from-below fuels treatments, which reduce both fire intensity and spread 521 

rates dominated fire hazard management, with relatively small areas of oak woodland restoration 522 

applied as fuels treatments. Under Mixed fuels scenarios (Fig. 7c), areas without oak are treated 523 

primarily with conventional thinning, whereas areas with oaks are dominated by oak savanna and 524 

woodland restoration. The latter reduces fire intensity more than conventional thinning but can 525 
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increase fire spread rates under extreme fire weather. Finally, because oak restoration treatments 526 

are generally more expensive than conventional thinning, Conventional fuels scenarios support 527 

greater treatment area than Mixed fuels scenarios (not shown). 528 

As a result of all these factors, at a landscape scale the Mixed fuels scenarios create 529 

greater potential for surprising fires to spread over the central east-west ridgeline (dashed lines in 530 

Fig. 7) that forms the southern border of the Spencer Creek drainage (Fig. 2), and into 531 

watersheds to the south. This can occur either via rapid spread through the grass fuels of oak 532 

treatments along ridgelines and south- and west-facing slopes, or by running through areas of 533 

conifer forest that have received less fuels treatment than in Conventional fuels scenarios, thus 534 

burning with higher intensity and faster spread rates due to fuels accumulation (Fig. 7a, 7e-f).  535 

 536 

Insert Figure 8 near here 537 

 538 

 Wildfire ignitions in the study area are primarily caused by people, and are concentrated 539 

along roads and in areas of higher population density (Sheehan 2011). Both roads and higher 540 

population density are concentrated along valley floors and flatter topography. In addition, both 541 

are concentrated closer to the Eugene-Springfield metropolitan area to the north, leading to 542 

higher probabilities of ignition there (Fig.7d). The ignition locations of surprising fires, however, 543 

were typically outside the areas that most frequently burned in those same fires (Fig. 7e-f, Fig. 544 

8). In both Conventional and Mixed fuels scenarios, surprising fires most often started in the 545 

Spencer Creek drainage, but most frequently burned areas to the south of the drainage. In 546 

Conventional scenarios, surprising fires were less frequent because the greater intensity of 547 

conventional thinning along the divide restricts the spread of fires to the south, even under 548 
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extreme fire weather (Fig. 7e). In contrast, in the Mixed scenarios, the corridors of restored oak 549 

and lower levels of conventional thinning along this divide allowed fires to spread more 550 

frequently and into the drainages to the south, thereby increasing the size of fires, the number of 551 

surprising fires, and the number of times that areas are burned by surprising fires (Fig. 7f, Fig. 8).  552 

To determine whether the ignition locations of surprising fires under the Low climate 553 

(MIROC A2) scenarios were similar to those of the High climate (Hadley A2) scenarios, we 554 

examined the locations of 38 fires that met the surprising fire size threshold of 600 ha for the 555 

Low climate futures. Only 3 of those surprisingly large fires (<10%) started in the Spencer Creek 556 

drainage (Fig. 2), compared to nearly 2/3 of the High climate surprising fires. This suggests that 557 

the more extreme fire weather of the High climate scenarios “unlocked” certain areas in the 558 

Spencer Creek drainage that were resistant to starting large fires under both the past 50 years and 559 

theLow climate change futures. Many of thesesurprising fires initially spread through mosaics of 560 

successional vegetation and agricultural grasses that would have resisted fire growth under all 561 

but extreme fire weather.  Under extreme fire weather, however, these fires built expanded 562 

perimeters as they passed through these fuels, then crossed the Spencer Creek divide and spread 563 

to large areas to the south.  564 

One of our key findings for the study area as a whole is that the places that experienced 565 

surprising fires most frequently were outside the areas where the fires started (Fig. 7e-f). 566 

Specifically, under the High climate futures, surprising fires tended to start in areas with higher 567 

ignition probability (Fig. 7d) but less hazardous fuels that were not ignition locations for the 568 

largest fires under Low climate futures. This finding prompted an examination in greater detail 569 

of a smaller area/shorter time period in which surprising fires occurred, which we describe next. 570 

 571 
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Knowing alternative trajectories of landscape change: a multi-scale focal area analysis 572 

Probabilistic methods intended to test assumptions about how the future may unfoldare 573 

only possible when a large number set of alternative futures is available for comparing and 574 

contrasting likelihoods. These methods also present challenges, such as how to understand large 575 

volumes of data from model results that span dimensions of space, time, and topic. This can be 576 

especially challenging wheninterpretation of these results must be cast in the language of 577 

likelihood and take into consideration the rare combination of events and actions, some of 578 

whichmay have severe consequences. 579 

Section III identifiedstudy-area wide differences in occurrence,likelihoodand magnitude 580 

of surprisingly large fires between High and Low climate change scenarios.  While none of the 581 

38 surprising fires (>600 ha) in the Low climate futures were as large as any of the 62 surprising 582 

fires (>6,000 ha) in the High climate change futures, the surprising fires as a set show a common, 583 

non-random spatial pattern. Figure 8a (High climate change) and 8b (Low climate change) 584 

depict, for the entire study area, the likelihood that each IDU would experience a surprising fire 585 

over 50 years. The similar territories affected by each, and the analysis of study area wide results 586 

presented earlier, suggest that landscape-scale events and actions common to both High and Low 587 

climate change conditions are influencing the likelihood that specific locations will experience 588 

surprising fires.   589 

Figure 8also delimits a rectangular territory we refer to as the Divergence Zone, i.e. 590 

where surprising fires were much more likely to occur under High climate futures than under 591 

Low climate futures.While thisDivergence Zone was one of three portions of the study area that 592 

experienced surprising fires under Low climate change (Fig. 8b), it was principally defined by 593 

the IDUs that have the highest likelihood of surprisingly large fire under High climate 594 
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change(Fig. 8a). Yeta portion of this Divergence Zone, that we call the Focal Area (oval outline 595 

in Fig. 8c),experienced no surprisingly large fires under Low climate change (Fig. 8b).  596 

 597 

An envelope of space and time 598 

 In the section that follows, we contrast the shared overall pattern and location of the high-599 

likelihood territory of large fires regardless of climate future in the Divergence Zone with the 600 

divergence in trajectories of expected fire patterns between High and Low climate futures at a 601 

smaller extent and finer spatial grain in the Focal Area. The spatial pattern of surprising fires 602 

shown in Figure 8a-bsuggests that landscape-scale events and actions common to both High and 603 

Low climate change conditions influence the likelihood that specific locations will experience 604 

surprising fires. We employ the concept of a spatio-temporal “envelope”, an abstract space with 605 

dimensions of distance and time smaller than the full extent of the study area and shorter than the 606 

full 50-year modeled time horizon, to examine when and why this common pattern breaks down 607 

in the Focal Area. We use thissubset of modeled future results, and the surprising fires that occur 608 

in them in the High climate futures,to explore the relationship between events(landscape changes 609 

arising primarily from biotic and abiotic processes), and actions(landscape changes due primarily 610 

to people) (Shearer 2005). 611 

Before proceeding, it is important to understand how climate and management interact to 612 

influence simulated wildfire, and the ways in which this coupling is grounded in representations 613 

of reality. Emulating real-world processes, fire in the simulated landscape is driven by 614 

interactions among ignitions, weather, fuels, fuel moistures and topography in space and over 615 

time. Modeled fire weather and fuel moistures are driven by projected temperature and 616 

precipitation from downscaled climate change models (Appendix S1). The close alignment of 617 
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large fire events with the annual expected area burned (Fig. 5, gray shaded area), shows how 618 

climate-driven variability in fire weather influences modeled fire, and yet does not determine it 619 

completely. Management, on the other hand, affects modeled fire by changing available fuels. 620 

The fact that the Mixed fuels treatment scenarios experienced nearly twice as many large fires as 621 

the Conventional fuels treatment scenarios under the Hadley climate projections shows that 622 

vegetation management can have a large impact on wildfire in our simulated landscapes. 623 

Importantly, the Mixed and Conventional scenarios experienced identical fire weather and 624 

numbers of ignitions over the course of their respective model runs.  The results thus show how 625 

the Conventional fuels management approach(actions) better controls fire size under the exact 626 

same climatic signals (events), while further exploration of model outcomes in space and time 627 

reveals some of the underlying reasons.   628 

 629 
Insert Figure 9 near here 630 

 631 

Event space, event time: 632 

Figure 9 depicts the time series evolution of surprising fire likelihood in the Focal Area.  633 

In decennial steps, the frequency with which each IDU experienced a surprisingly large fire is 634 

summed for 50 runs of each of the four High climate change scenarios. A trajectory of gradually 635 

increasing large fire likelihood is apparent in the first three decades, climbing steeply in the 636 

fourth decade, 2037- 2046, then declining slightly in the final decade.   637 

 638 

Insert Figure 10 near here 639 

 640 

Action space, action time: 641 
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 As described in Section III above, agents take actions that are influenced by landscape 642 

feedbacks.  Among the broad array of vegetation management actions available to agents 643 

(including timber harvest, commercial thinning and ecological restoration), onetype isfire hazard 644 

fuelsreduction treatments (Table 6). Fuels treatments are actions undertaken throughout an IDU 645 

to reduce fire risk by reducing the volume of fuels and/or altering the type of fuels, which in turn 646 

influences future fire. 647 

The discussion of modeled fire behavior in Section III focused attention on the 648 

observation that, in general, the areas of highest likelihood of surprising fires were not 649 

wheretheir ignitionsoccurred.  In Figure 10a, we explore explanations for this by comparing, for 650 

each of five modeled decades, the likelihood of fire hazard reduction actions, as well as 651 

ignitionlocations for large fires, in the High climate change futuresin the Divergence Zone.In 652 

Figure 10b the shading of the background map depicts the likelihood that each IDU in the Focal 653 

Area experienced a surprisingly large fire.  Figure 10c depicts the likelihood that the agent 654 

associated with each IDU in the Focal Area applied fire hazard reduction treatments during that 655 

decade. 656 

 657 

Actions and events in time and space:  658 

As noted above, under High climate change, treatments undertaken for the purpose of 659 

reducing fire severity outside of the Focal Area (inside the WUI), created conditions that allowed 660 

fires to spread into the Focal Area (outside the WUI) (Fig 10a and b).Agent behavior showed a 661 

fundamental misapprehension of the relationship between reducing parcel-scale risk in 662 

relationship to landscape-scale hazard.  Under High climate mixed fuels futures, increased fire 663 

led agents to reduce their individual risk in areas of high ignition probability by restoring oak 664 
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savanna and oak woodland grasslands.  But this allowed extreme fire weather to drive fires into 665 

less treated areas due to the relatively high fire spread rates.  The focus on reducing fire intensity 666 

in high ignition areas through restoring fire-adapted grasslands, opened the potential under 667 

conditions of extreme fire weather for rapid fire spread to locations outside treated areas.  Once 668 

outside treated areas, these fires were able to spread even more rapidly and burn with higher 669 

severity, leading to fire events beyond the bounds of historic precedent. Following large fire 670 

events anywhere in the landscape, feedbacks in the model led agents to perform more and more 671 

fire hazard reduction treatments, particularly inside the WUI – the areas of higher housing 672 

density and in general, higher ignitions, increasing the likelihood that a large fire might escape. 673 

Agent’s expectations, both of the effects of fire hazard reduction actions undertaken locally, and 674 

of the ways these actions would interact with future weather events, were wrong, with 675 

severeconsequences at certain times and locations in the Focal Area. 676 

 Figure 10d compares the likelihood of surprising fire to the likelihood of fuels treatments 677 

in the Divergence Zone and in the Focal Area.  In contrast to Figure 10b, which shows spatially 678 

distributed likelihoods, in Figure 10d average likelihoods are shown for each decade.  Figure 10d 679 

shows that, against a backdrop of generally rising likelihood of surprising fire, a generally 680 

declining likelihood of fire hazard reduction actions is seen in both the Focal Area and the 681 

surrounding Divergence Zone.  The likelihood of surprising fires in the Focal Area, after moving 682 

in rough synchrony with that of the Divergence Zone through decade three (2027-2036), 683 

increased significantly in the fourth (2037-2046) and fifth (2047-2056) decades, but triggered no 684 

increase in treatments to the Focal Area.   685 

 While other locations within the study area did experience fires larger than the 600 ha 686 

threshold under Low climate change, the Focal Area did not.  Yet under High climate change the 687 
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Focal Area experienced higher likelihood of surprising fire across all decades -- particularly the 688 

last two -- than did the Divergence Zone surrounding it, the inverse of the Low climate change 689 

relationship.  High climate change thus is associated with altered trajectories over both time and 690 

space and in the relationship between events and actions.  The space:time envelope of actions 691 

seems, in this important way, to be decoupled from that of events.  To the extent that people’s 692 

expectations derive primarily from lived experience, these results suggest their expectations are 693 

likely to be wrong, and perhaps severely so, in such circumstances. 694 

Our analysis also suggests that a combination of events – climate, topography, wind and 695 

vegetation succession, in concert with a combination of actions – ignitions, along with fuels 696 

reductions in one area and the lack of them in another, combined to create an outcome in the 697 

Focal Area under High climate change futures that is at odds with expectations.  698 

We argue this identifies an opportunity to reduce ignorance, as implied in Figure 1 (Faber 699 

et al. 1992), through a geographically targeted program of landowner education and fire hazard 700 

reduction in the Divergence Zone and places comparable to it as a precautionary step in 701 

anticipation of surprises likely to be wrought by climate change. It also suggests that 702 

policymakers may need to consider landscape-level effects that could inadvertently arise from 703 

the site-scale restoration efforts of landowners seeking to protect their own properties.   704 

At least two kinds of surprise manifested in the simulations, first, surprising events that 705 

could occur without warning, and for which lived experience thus offered no preparation; 706 

second, patterns of surprise that occurred in constrained space:time envelopes across multiple 707 

futures, and that arose from the unanticipated interplay of actions and events.  The 708 

mechanismsunderlying these phenomena included feedbacks and interactions among multiple 709 

types of processes that are difficult to anticipate in the abstract.  The simulated futures offer 710 
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insights into both the view from within individual futures as they unfold in space and time, as 711 

well as those that can only be gleaned by explorations across many such futures. 712 

 713 

IV. Conclusions 714 

The definition of geodesign used in this Special Issue begins with 715 

Steinitz/Canfield’s:geodesign applies systems thinking to the creation of proposals for change 716 

and impact simulations in their geographic contexts, usually supported by digital technologyand 717 

adds what, for us, are important distinguishing capabilities when it comes to using geodesign 718 

techniques to anticipate surprise. We find the most significant of these are,for any given future 719 

scenario, the capacity to rapidly model: 720 

 721 

1) a large number set (>30) of spatially and temporally explicit alternative futures, each of 722 

which is consistent with the assumptions of its driving scenario; 723 

2) each alternative future in a manner that takes into consideration a large number set of 724 

probabilistically co-varying (biophysical) events and (socio-cultural) actions in time and 725 

space, along with; 726 

3) the non-linear positive and negative feedback loops between and among modeled 727 

phenomena, and 728 

4) impact simulations/evaluations at the multiple scales most relevant to the potentially 729 

surprising phenomena of interest. 730 

 731 

Starting from Holling’s definition of surprise (when perceived reality departs qualitatively from 732 

expectation) and reduced to its essentials, the analytic process we used consists of 6 steps: 733 
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1) identify the surprising phenomenon of interest (here, wildfire); 734 

2) obtain a spatially and temporally explicit historic record of the frequency and magnitude 735 

of the phenomenon of interest over time periods and geographic extents comparable to 736 

those you wish to model (here, the ODF historic fire data set for western Oregon over a 737 

fifty year period from 1960-2011); 738 

3) use the historic record to quantitatively characterize the magnitude of an occurrence of 739 

the phenomenon that departs surprisingly from historic expectation (here, the 99.83 740 

percentile historic fire in the Excerpted Fire Zone); 741 

4) use the large number set of modeled alternative futures to identify times and places most 742 

likely to experience surprising instances of the phenomena in question; 743 

5) explore cause:effect relationships and strongly-coupled correlations between actions, 744 

events and surprise; 745 

6) devisespatially and temporally localized strategies or recommendations that have the 746 

potential to reduce the likelihood of expecting wrong. 747 

 748 

If we accept Holling’s definition of surprise, and within the caveats of what can be usefully 749 

concluded from modeled results, geodesign techniques as represented here offer deeper insight 750 

into: 751 

1) when and where surprising departure from expectation is due to events, to actions, or to 752 

the unanticipated interplay of both; 753 

2) when, where and how ‘reducible ignorance’ can be most effectually reduced vis-à-754 

visanticipatable surprises. 755 
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Operationally, these techniques offer such capabilities because the tools they employ can 756 

produce detailed information about each model run that, in our case, was recorded in the 757 

Envision delta array, a log of every change in every location in each time step of each simulation 758 

run (approximately 500MB to 1000MB of data per model run). The delta array allows users to 759 

extract records of changes in the landscape (either actions or events) including a) their location 760 

and time, b) the state of the location and its surroundings prior to, at the time of, and following 761 

the action/event, c) any predefined set of precedent or subsequent actions/events in the location 762 

or its surroundings within any specified window of time, and d) the proximate causes of any 763 

modeled action/event, such as the direct effects of wildfire, human occupancy, or fuels 764 

management on vegetative succession.  765 

Finally, we see these geodesign tools and techniquesas analytic advances, which, as 766 

advances always do, come with costs. They accelerate a transition from design and planning 767 

techniques that have historically relied primarily on planners/designers to, with input from 768 

others, deterministically propose a comparatively small number of preferred trajectories to 769 

pursue from current to (presumably better) future landscapes. The geodesign approaches 770 

described heremove us toward techniques in which teams of people, including 771 

planners/designers, explore a probabilistically determined large number set of trajectories from 772 

current to future landscapes. We list above a few of what seem to us the most compelling aspects 773 

of these approaches. The costs, however, are not trivial. For most of human history, the principal 774 

bottleneck to the production of new information and pragmatic knowledge has been acquiring 775 

reliable data about the world. We are now in a time when the bottleneck is no longer acquiring 776 

data, but understanding the enormous volumes of data we acquire.  The approaches outlined here 777 

exacerbate this problem. This challenge, due in part to advances in data acquisition, 778 
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computational power and the increasing desire to inform decision making in the presence of deep 779 

uncertainty, is central to society’s capacity to adapt to pressing challenges, e.g. climate change 780 

and variability. While the technology and resources necessary to collect and generate data are 781 

readily available, ways to understand these data, and how people respond to them, have not kept 782 

pace. Traditionally, each research data acquisition activity was coupled to a specific hypothesis, 783 

but researchers now generate data en masse--- compounding the problem of how to extract 784 

knowledge from the world with one of how to extract knowledge from an overwhelming amount 785 

of data about the world. New forms of data understanding, and specifically the ability to grasp 786 

information hidden within data so that it becomes practical knowledge, will be needed if these 787 

techniques become the norm in planning and design, and could emerge as a new bottleneck in 788 

the well-informed and anticipatory steering of landscape change.789 
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Streets and Glantz 
2000 
 
 
Lempert et al 2002 
 
 
 
Driebe and 
McDaniel 2005 
 
 
Shearer 2005 
 
 
 
Kuhlicke 2010 
 
 
 
 
 
Gross 2010 
 
 
 
 
 
Markley 2011 

Definitions and Types of surprise 
 
Surprise an event whose occurrence was not 
anticipated 
 
3 types of surprise: unexpected discrete event; 
discontinuities in long term trends; sudden 
broad awareness of new information 
 
 
 
closed vs. open ignorance as source of surprise 
 
 
anticipatable vs. unanticipatable surprise 
 
linkage of unexpected events with consequences 
 
 
 
surprise a break in continuity that is subjectively 
determined, open vs. closed, sudden vs. 
creeping 
 
surprise an encounter with the unanticipated 
arising from a combination of deep uncertainty 
and complexity 
 
systems with differing dynamics exhibit 
differing ‘horizons of predictability’, often with 
strong sensitivity to initial conditions 
 
surprising events (and their explanations) vs. 
surprising actions (and their reasons) 
 
 
surprise when actual experience does not fit into 
pre-existing scheme, not a surprise to everyone, 
a function of ‘realm of experience’ and ‘horizon 
of expectation’; ‘everyday’ surprise vs. ‘radical’ 
surprise which unravels an unknown unknown 
 
surprise when pre-existing set of experiences 
and horizon of expectation are inappropriate; 
unanticipated (positive or negative) vs. 
anticipated (positive or negative) surprises 
 
 
STEEP surprise has low probability, high 
impact 

Qualities of surprise  
 
considered too low a probability to occur 
 
 
thresholds and non-linearities, fast and 
slow variables, can be negative or positive, 
people’s reactions constrained by 
‘behavioral response pool’ (see Breznitz 
1985) 
 
surprise source traceable to type of 
ignorance (see Figure 1) 
 
discontinuities, synergisms 
 
opens window of opportunity to increase 
capacity to manage environmental 
problems 
 
preparedness is always relative to 
convictions about the world held by the 
person who is/isn’t surprised 
 
greatest surprises come not from lack of 
attention but from undue focus on the 
wrong things 
 
a system’s ‘signature of variability’ can be 
used as a tool for characterizing system’s 
predictability, fluctuations play a critical 
role in complex systems dynamics 
 
 
 
 
people are vulnerable if what they don’t 
know prevents them from coping with their 
environments 
 
 
 
influence of four forms of the unknown: 
Nescience, Ignorance, Non-knowledge, 
Negative knowledge 
 
 
 
4 types varying by degree of credibility -  
Low probability, high impact, high 
credibility; High probability, high impact, 
low credibility; High probability, high 
impact, disputed credibility; High 
probability, high impact, high credibility 

 
Table 1: Summary definitions and qualities of surprise from literature 1984 – 2013. 
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Exploration  Simulation of constructive explorations of problems that are either not well understood or are 
misunderstood. Especially in free-form, scenario based versions,discovery and realization of 
unimagined difficulties are opportunities that occur. 

 
Planning  (Usually linked with evaluation). Technical, doctrinal, and procedural inquiries meant to 

prepare for or assess operational systems, e.g., weapons systems, logistics systems, 
organizations, information systems, economic systems. 

 
Cross-check A back-up procedure to provide additional insight and confidence to 
 recommendations devised with other means. For example, expert opinion or 
 consultation – primarily based on experience – may be examined with games or 
 simulations to discover flaws or inconsistencies not reported or overlooked. 
 
Forecasting  Making predictions, especially about poorly understood problems, is far less 

 interesting an application than several of the others here characterized.  Users must 
know what they want to forecast, be able to judge the value to be gained from additional 
forecast accuracy, and have confidence that the builders of the forecasting device possess 
a good abstraction of the system being studied. 

  
Group opinion  Most realistic policy decisions are based largely on expert opinion and judgment. 

 While little explored or used, games and simulations have operational potential for 
eliciting, clarifying, and improving expert opinion, considered individually or in groups. 

 
Advocacy  A competent modeler can build just about any bias imaginable into a game or 

 simulation. A one-sided case can be presented, unintentionally too, in support of a 
partisan policy or position. In a bureaucratic context, the use of models, particularly 
large-scale machine-based ones, has led to considerable confusion about the differences 
between political processes and scientific ones. Advocacy need not be pernicious, 
especially if its existence is openly admitted and its benefits are consciously sought.  

 
 
 
 

Table 2: Applications of operational models, simulations and games (adapted from Brewer 

1986). 
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AN OUTLINE OF FORECASTING METHODS 
 

    Normative    Exploratory 
 

 
 Quantitative  Scenarios    Scenarios 
    Technology sequence analysis  Time series 
         Regression analysis 

       Multiple-equation  
       models 

         Probabilistic models 
 Trend impact 
 Cross impact 
 Interax 
 Nonlinear models 
  
 Qualitative Scenarios Scenarios 
  Delphi Delphi 
  In-depth interviews In-depth interviews 
  Expert group meetings Expert group meetings 
  Genius Genius 
  Science fiction  
  
 
     
   
     
     
 
 
Table 3: An outline of forecasting methods (adapted from Gordon 1992). 
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  LCC   The first letter denotes climate change assumptions   
  L = Low climate change, based on MIROC (CMIP3*) 

 
  

  H = High climate change, based on Hadley (CMIP3*) 
 

  
  

     
  

  LCC   The second letter denotes development pattern assumptions   
  C = Compact development: 

  
  

  
 

higher residential densities in urban areas, greater restrictions on rural development 
  D = Dispersed development 

  
  

  
 

lower residential densities in urban areas, fewer restrictions on rural development 
  

     
  

  LCC   The third letter denotes fuels management assumptions   
  C = Conventional fuels management 

  
  

  
 

Protect life and property by supporting rapid fire suppression, reduce fire spread and 
intensity 

  M = Mixed fuels management 
  

  
  

 
Increase landscape resiliency to fire by restoring fire-adapted oak ecosystems, 

  
 

reduce fire intensity and spread 
  

  
  

     
  

The 8 scenarios: 
   

  
  LCC Low climate change/ Compact development/ Conventional fuels management 
  LCM Low climate change/ Compact development/ Mixed fuels management 
  LDC Low climate change/ Dispersed development/ Conventional fuels treatment 
  LDM Low climate change/ Dispersed development/ Mixed fuels treatment 
  HCC High climate change/ Compact development/ Conventional fuels management 
  HCM High climate change/ Compact development/ Mixed fuels management 
  HDC High climate change/ Dispersed development/ Conventional fuels treatment 
  HDM High climate change/ Dispersed development/ Mixed fuels treatment 
              

 
*CMIP3 = Third Coupled Model Intercomparison Project 

  
 
 
Table 4: Scenario overview briefly describing the assumptions used to model the 8 
alternative futures. 
 
 
 



 
Year and Scenario 2000 2050 LCX 2050 LDX 2050 HCX 2050 HDX 

      Total Population Targets 26,052 100,602 100,602 100,602 100,602 
# and % of pop growth that is:           

  Urban (UBGs)  6,078;  23% 73,173 (new: 67,095;  
90%) 54,536 (new: 48,458;  65%) 76,901 (new: 70,823;  

95%) 65,718 (new: 59,640;  80%) 

  Rural 19,974;  77% 
27,429 (new: 7,455;  

10%) 46,066 (new: 26,092;  35%) 23701 (new: 3,727;  5%) 34884 (new: 14,910;  20%) 
            
Urban           
Density1  1.7 5.7 4.2 5.9 5.2 

      
      Rural Residential           

Expansion area  

Limited to rural 
residential zones 

and grand-
fathered parcels 

Location of new rural residential development determined probabilistically based on suitability for rezoning and agent 
preferences 

Cluster Development  
Clustered rural 

development is not 
supported 

Clustered rural 
development is not 

supported 

50% of new rural 
development is clustered 

10% of new rural 
development is clustered 

 Total Rural Residences2 7,925 9,862 17,258 8,383 12,820 
            
            

Rural Service Development 
Charge3 n/a none none $750/new rural residence $750/new rural residence 
 

     
      1  Gross residential dwelling units per hectare (Total study area weighted average) 

  2  varies from 2.89 ppl/hhd ca. 2000 to 2.52 ppl/hhd ca. 2050 
   3  One-time fee for each new rural dwelling supplements public incentives vegetation treatment budget in 2010 U.S. dollars 

 
Table 5.Summary of scenario assumptions regarding population and dwelling unit density. Note: each of the four right-most 
columns characterize the driving assumptions of two (climate and human settlement pattern) of the three key scenario 
drivers.  Table 6 shows assumptions for fuels management that is the third key scenario driver. 
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Distinguishing Characteristics Among Conventional Fuels Treatment Scenarios and Mixed Thinning/Biodiversity Fuels Treatment Scenarios 
Characteristic Conventional Fuels Management Mixed Thinning/Biodiversity Fuels Management 

Overall Fuels Management 
Strategy 

Emphasis is on protection of homes by reducing flame lengths 
and fire spread rates to support rapid fire suppression 

Emphasis is on landscape resiliency to fire through restoration of fire-
adapted ecosystems such as oak savanna and open woodland. The focus 
is on the establishment of a landscape that allows fire to move through 
with low risk to people, structures and ecosystems 

Fire Hazard Treatments Emphasis is on reduction of fire spread rates and secondarily on 
fire intensity 

Emphasis is on reduction of fire intensity with less emphasis on 
reducing spread rates 

  
Density thinning of smaller trees and reduction of surface fuels, 
brush, and ladder fuels encouraged as primary fire hazard 
treatment in both conifer and hardwood stands 

Oak woodland restoration prioritized as the favored fire hazard 
treatment where substantial oaks are present.  Density thinning 
prioritized elsewhere.   

Landowner-funded 
restoration 

Landowners perform oak savanna and woodland restoration at 
their own expense at response rates from landowner survey. Oak 
savanna and oak woodland restoration are equally likely.  

Same as conventional scenarios except that landowners are twice as 
likely to perform restoration on their own  

Public Incentives Funding Incentivized fire hazard treatments are implemented by single 
landowner types within their taxlot boundaries 

Incentivized oak woodland fire hazard treatments may involve 
cooperation across taxlot boundaries and among different landowner 
types  

  Incentivized fire hazard treatment blocks may be up to four 
times larger than non-incentivized fire hazard treatment blocks 

Incentivized oak fire hazard treatment blocks may be eight times larger 
than non-incentivized treatment blocks and twice as large as density 
thinning blocks 

Treatment Cost and 
Longevity 

Density thinning treatments are relatively "quick and dirty", 
resulting in less cost per unit area but shorter treatment longevity 

Density thinning as in Conventional scenarios; Prairie/oak restoration 
and oak fire hazard treatments are more costly but last longer before 
retreatment is required; High quality restoration costs more than 
structural but also retains effectiveness longer. 

Fire Hazard Treatment Cost 
and Quality 

Density thinning is performed at only a single level of quality 
that reflects current practices.  The treatment cost/unit area 
varies by existing habitat type and ranges from moderate cost to 
substantial profits. 

Density thinning as in Conventional scenarios; Incentivized oak 
woodland fire hazard treatments are ~50:50 structural v. high-quality 
w/in the WUI to balance increased risk reduction v. larger total 
treatment area; Outside the WUI all treatments are structural due to the 
lower density of houses to maximize treated area. Treatment cost/unit 
area varies by existing habitat type and ranges from substantial cost to 
break-even or moderate profits. 

"Extreme Makeover" of 
conifer forest to oak habitat1  Agents never convert conifer forest to oak habitats 

Agents may convert former oak habitats that have succeeded to conifer 
forest into oak savanna or woodland by clearing the forest, planting oaks 
and creating a grassland ground layer.  Such treatments only occur in 
areas w/merchantable timber contiguous to oak restoration projects.  The 
intention is to create larger contiguous areas of oak through treatments 
expected to pay for themselves or produce a profit.  For biodiversity-
based savanna policies, the goal is also to conserve the historical range 
of variability by restoring former savanna in more productive areas 

1 Conversion of conifer forest to oak habitat in areas of former savanna and oak woodland, or in areas no longer favorable for Douglas-fir but suitable for oak due to climate 
change 

Table 6. Summary of assumptions regarding scenario fuels management.  
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Total 
fires 

>6k ha 

Total 
runs 
with 

fires >6k 
ha 

Probability 
per run of 
a fire > 6k 

ha  

  

Number of Surprising Fires per run 

 
       0 Fires 1 Fire 2 Fires 3 Fires 

Scenario 
        HCC 13 12 24% 

 
38 11 1 0 

HCM 25 18 36% 
 

32 13 3 2 
HDC 9 9 18% 

 
41 9 0 0 

HDM 15 11 22% 
 

39 7 4 0 
All 62 50 25%   150 40 8 2 

          
Table 7.Number of surprisingly large fires by High climate change scenario and run. 
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Figure Captions 
 
Figure 1. Classification tree of types of ignorance as a source of surprises (adapted from Faber et 
al. 1992) 
 
Figure 2. Study area within Oregon showing the Willamette Valley Ecoregion; Wildland Urban 
Interface; Urban Growth Boundaries; and Spencer Creek drainage. 
 
Figure 3. Oregon Department of Forestry Fire Size Rank Abundance Magnitude for entire state 
of Oregon demonstrating power law relationship of frequency and size (i.e. area burned). 
 
Figure 4. Study area location (black) surrounding Eugene-Springfield metropolitan area and 
Oregon Department of Forestry fire zone (medium gray) excerpted from the Willamette River 
Basin (WRB). 
 
Figure 5.Projected timing of large fires a) >600 ha for Low climate (MIROC A2) scenarios, b) 
>6,000 ha for High climate (Hadley A2) scenarios in 81,000 ha. study area under 200 
simulations of each future climate scenario. Each panel shows projected large fires (wide 
columns) under the historical period (1982-2007, light gray shading), and either a) MIROC A2 
or b) Hadley A2 scenarios (2007-2058). Each graph also shows the number of days with extreme 
fire weather above the threshold needed to generate a large fire (narrow vertical lines), and the 
annual projected area burned (dark gray shading, not to scale) based on combined changes in fire 
weather and increased ignitions due to population growth. Note difference in total number and 
frequency of surprising fires under Low vs. High climate futures. 
 
Figure 6.High climate scenario, year and size of all fires >6,000 ha.  Large fires occurred in 
clusters through time, and differed in both size and frequency depending on fuels management in 
High climate scenarios. Mixed fuels management scenarios accounted for 60% of all large fires 
and 80% of early large fires.  All but one fire >9,000 ha occurred in a Mixed scenario. Because 
large fires in Mixed scenarios were both more frequent and larger, they accounted for 68% of the 
area burned in large fires.  Despite the fact that Dispersed scenarios accounted for only 40% of 
all large fires, they accounted for 70% of early large fires.  
 
 
Figure 7.Location of large fire ignitions and burned area in Spencer Creek drainage (see Figure 
2) in relation to landscape factors.a) Initial forest types, b) Fuels treatment types and intensity 
under Conventional fuels treatment scenarios, c) Fuels treatment types and intensity under 
Mixed fuels treatment scenarios. d) Initial ignition probabilities, e) Ignition locations (black dots) 
and number of times burned in large fires in High climate/Conventional fuels scenarios. f) 
Ignition locations (black dots) and number of times burned in large fires in High climate/Mixed 
fuels scenarios. Ridgelines are shown in all panels for reference.  
 
Figure 8.Surprising fires spatial pattern showing Divergence Zone and Focal Area. a) Likelihood 
of surprising fires in High climate change futures with Divergence Zone outlined, b) Likelihood 
of surprising fires in Low climate change futures with Divergence Zone outlined, c) Divergence 
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Zone showing likelihood of surprising fires in High climate change futures and Focal Area 
within the Divergence Zone highlighted in light gray. 
 
Figure 9.Variation over time in likelihood of surprising fires in Focal Area for High climate 
change futures.  The oval in the 2012 air photo insert identifies the location of the Focal Area. 
 
Figure 10. a) Likelihood of fire hazard treatment and ignition points in the Divergence Zone for 
High climate futures, b) Likelihood of surprising fires in the Focal Area, c) Likelihood of fire 
hazard treatments (i.e. fuels reduction) in the Focal Area, d) Average likelihood of surprising 
fires and fire hazard treatments in the Divergence Zone and the Focal Area 
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Supplemental Appendix S1.  Key assumptions of modeled climate change and the methods 
employed to model fire behavior and surprising landscape change 

Agents and decision-making 
Agents make decisions consistent with their values by selecting from a list of potential 

options (Ribe et al 2014). Decision propensities are also influenced by landscape feedbacks, 
which emerge in the form of scarcities and serve to mediate individualistic goal-seeking behavior 
in terms of coordinated actions meant to minimize such scarcities. For example, agents respond 
to landscape-level feedbacks from the number of houses threatened by wildfire over the previous 
five years by favoring vegetation treatments intended to reduce fire hazard as the number of 
homes threatened by fire increases.  Land management decisions trigger updates to state 
variables for each IDU thereby implementing the intended changes to the landscape.  
 
Vegetation change 

Changes in vegetation occur via three pathways: incremental successional changes (e.g., 
regeneration, tree growth and competition), action-driven changes due to agent decisions (e.g. 
thinning trees and brush, or changing an IDUs zoning to allow development) and event-driven 
changes (e.g. wildfire). Successional changes are effected with a probabilistic state and transition 
simulation model (STSM), which allows initially similar vegetation stands to grow along very 
different trajectories.  The STSM integrates maps of existing vegetation, a biometric tree growth 
model, and outputs from a dynamic global vegetation model (DGVM) that uses the same GCMs 
employed in the wildfire model (Yospin2014). Vegetation management is implemented using the 
agent decision protocols described above and the treatment protocols described below.  Wildfire 
is modeled using probabilistic ignitions and a mechanistic fire model, as described below.  
 
Vegetation Treatment Contrasts 

Under Conventional fuels treatment scenarios (Table 6), vegetation management is 
dominated by thin-from-below treatments, which aim to remove small diameter trees, reduce 
surface fuels, and raise canopy base heights – all intended to reduce fire intensity and spread 
rates.  In these scenarios, oak savanna and woodland restoration treatments are limited to those 
implemented primarily for biodiversity conservation.  Under Mixed fuels scenarios, oak 
woodland restoration can also be used for fire hazard reduction when oaks are present as a 
dominant or subdominant species. All thinning treatments increase the presence of herbaceous 
fuels due to the warm, wet winters and springs. Prairies, savanna and oak woodland restoration 
treatments create even more open canopy structure and dramatically increase the amount of 
herbaceous fuels, including grasses. Fires in vegetation types with low canopy cover but higher 
levels of herbaceous fuels tend to be less severe, but have the potential for rapid spread under 
low fuel moistures, and exhibit a much more non-linear response to extreme fire weather.     

 
Modeling fire behavior  

Wildfires are simulated using the two-dimensional MTT fire growth algorithm, which is 
widely applied in the U.S. for real-time wildfire decision support (Noonan-Wright et al. 2011) 
and large-scale wildfire risk assessments (Finney et al. 2011). The MTT algorithm replicates fire 
growth by Huygens’ principle where the growth and behavior of the fire edge is modeled as a 
vector or wave front (Knight and Coleman 1993). In essence, the MTT algorithm is a more 
efficient way of calculating what would happen if fire were passed from cell-to-cell using 
interactive procedures based on the rate and direction of spread. For example, fire passes most 
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readily through upslope and downwind IDUs, i.e. the path of travel that minimizes time until 
arrival. When time until arrival for each IDU is mapped, the fire model produces a relatively 
accurate depiction of fire spread over time. IDUs that can't carry fire or carry it at a very slow 
rate effectively block the fire’s path, although alternative paths may exist. Details of the fire 
model are summarized below. 

Flame lengths are returned for each IDU burned, and used to determine fire effects on the 
vegetation of each IDU through which the fire passed. Fire effects use a threshold-based 
transition model. Transitions are triggered when the flame length exceeds tolerances set for each 
vegetation type.  Low severity fires may change an IDU’s fuel model but not its vegetation state.  
Mixed severity fires change both fuel model and the vegetation state and its associated fire-
related characteristics, but do not kill all trees.  Instead, the fire may change the diameter class or 
dominant tree species of the IDU through mortality to smaller diameter trees and/or less fire 
tolerant tree species.  Stand replacing fires kill all trees in a stand, although sprouting species 
may regenerate in future years.  

We used Energy Release Component (ERC) to calibrate and project future wildfire 
probabilities and behavior based on historic fire sizes and frequencies. Daily ERC is a measure 
of the available energy (BTU) per unit area along the flaming front at the head of a fire.  It is a 
function of the fuel model and the live and dead fuel moistures over the past 7 days. The 
National Fire Danger Rating System bases its risk assessments on ERC, while state and federal 
agencies base fire suppression staffing decisions on the 90th, 95th, and 97th percentiles of 
historical ERC values. ERC model G is widely used to track fire danger and uses a composite of 
different fuel sizes to isolate climate effects on fire behavior from those of local fuels. ERC 
model G values for simulations were generated from MC1 using downscaled climate data for 
historical and future periods projected from simulated historical conditions and the two future 
climate x emissions scenarios.  

We built and calibrated the fire model using historical weather data from Remote 
Automated Weather Stations and fire records from the Oregon Department of Forestry. 
Mathematical relationships between ERC, the probability of a fire, and the size of fire were 
derived for a 38,800 km2 fire assessment area from the Willamette Valley south to the California 
border. This area includes a broader range of ERC values (including much higher values) than 
the study area, while still supporting reasonably similar vegetation types. We probabilistically 
sampled from the derived functions to simulate the stochastic effects of climate and ignitions on 
daily fire likelihood and expected size. Because the Hadley GCM projects even higher ERC 
values than the records for the fire assessment area, fire probability and behavior under such 
conditions were assumed to follow the relationships derived from historical calibrations.  

To complete fire model implementation, ignition locations were assigned using an 
ignition probability surface derived from an empirical study of ignition locations in the 
Willamette Valley (Sheehan 2011). Proximity to roads of different use levels was the dominant 
factor in the ignition model and was static throughout Envision simulations.  A second important 
factor was human population density, which was used to update the ignition probability surface 
annually. Finally, the relationship between WVE human population growth and the number of 
ignitions was calibrated from historical data.  After all model components were put in place, 
modeled fire size distribution was calibrated to actual wildfire for the study area using climate 
and fire records from 1985-2006. 

 



An Anatomy of Surprise and Ignorance
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Figure 1. Classification tree of types of ignorance as a source of surprises (adapted from Faber et al. 1992).
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Figure 2. Study area within Oregon showing the Willamette Valley Ecoregion; Wildland Urban Interface; 
Urban Growth Boundaries; and Spencer Creek drainage.
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Figure 3. Oregon Department of Forestry Fire Size Rank Abundance Magnitude for entire 
state of Oregon demonstrating power law relationship of frequency and size (i.e. area burned).
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Figure 4. Study area location (black) surrounding Eugene-Springfield metropolitan area and Oregon Department 
of Forestry fire zone (medium gray) excerpted from the Willamette River Basin (WRB).
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Figure 5. Projected timing of large fires a) >600 ha for Low climate (MIROC A2) scenarios, b) >6,000 ha for 
High climate (Hadley A2) scenarios in 81,000 ha. study area under 200 simulations of each future climate scenario. 
Each panel shows projected large fires (wide columns) under the historical period (1982-2007, light gray shading), 
and either a) MIROC A2 or b) Hadley A2 scenarios (2007-2058). Each graph also shows the number of days with 
extreme fire weather above the threshold needed to generate a large fire (narrow vertical lines), and the annual 
projected area burned (dark gray shading, not to scale) based on combined changes in fire weather and increased 
ignitions due to population growth. Note difference in total number and frequency of surprising fires under 
Low vs. High climate futures.
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Figure 6. High climate scenario, year and size of all fires >6,000 ha.  Large fires occurred in clusters through time, 
and differed in both size and frequency depending on fuels management in High climate scenarios. Mixed fuels 
management scenarios accounted for 60% of all large fires and 80% of early large fires.  All but one fire >9,000 ha 
occurred in a Mixed scenario. Because large fires in Mixed scenarios were both more frequent and larger, they 
accounted for 68% of the area burned in large fires.  Despite the fact that Dispersed scenarios accounted for only 
40% of all large fires, they accounted for 70% of early large fires. 
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Figure 7.  Location of large fire ignitions and burned area in Spencer Creek drainage (see Figure 2) in relation to landscape factors. a) Initial forest types, 
b) Fuels treatment types and intensity under Conventional fuels treatment scenarios, c) Fuels treatment types and intensity under Mixed fuels treatment scenarios. 
d) Initial ignition probabilities, e) Ignition locations (black dots) and number of times burned in large fires in High climate/Conventional fuels scenarios. 
f) Ignition locations (black dots) and number of times burned in large fires in High climate/Mixed fuels scenarios. Ridgelines are shown in all panels for reference. 
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Figure 8. Surprising fires spatial pattern showing Divergence Zone and Focal Area. 
a) Likelihood of surprising fires in High climate change futures with Divergence Zone outlined, 
b) Likelihood of surprising fires in Low climate change futures with Divergence Zone outlined, 
c) Divergence Zone showing likelihood of surprising fires in High climate change futures and 
Focal Area within the Divergence Zone highlighted in light gray.
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Figure 9. Variation over time in likelihood of surprising fires in Focal Area for High climate change futures.  
The oval in the 2012 air photo insert identifies the location of the Focal Area.
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Figure 10. a) Likelihood of fire hazard treatment and ignition points in the Divergence Zone for High climate futures, b) Likelihood of surprising fires in the 
Focal Area, c) Likelihood of fire hazard treatments (i.e. fuels reduction) in the Focal Area, d) Average likelihood of surprising fires and fire hazard treatments 
in the Divergence Zone and the Focal Area.




